Capabilities

- Motivating model: multielement array, noiseless environments
- Extension to noisy environments
- Extension to other linear processor structures

Extension to Other Linear Processing Structures

- Linear excision usable <u>whenever</u> multiple emitters received over linearly independent channels
 - Space-time adaptive processors (STAP)
 - Polarization diverse receivers
- Linear excision can also be used to separate <u>baseband</u> symbol sequences if the modulation format induces significant conjugate or spectral redundancy on the output waveform
 - Conjugate-redundant BPSK and GMSK signals
 - » 1 Msps 802.11
 - » GSM, Bluetooth
 - Modulation-on-symbol direct-sequence spread spectrum signals
 - » 1 Msps and 2 Msps DSS 802.11 PHY's
 - » UMTS with short scrambling code
 - Frequency-diversity spread spectrum signals (e.g., stacked carrier spread spectrum)
- Latter approach leads to <u>linear single-antenna interference excision techniques</u> using RAKE filtering structures or OFDM subcarrier combinings
 - Adaptive demodulation and code-nulling processors (Agee, 1988, 1993)
 - Linear MMSE techniques (Honig and Madhow, 1994)
- Can also greatly increase linear excision capability of spatial processors
 - Degree-of-freedom increase
 - Additional separation on basis of range (TOA), Doppler (FOA), or code

Example Modulation-on-Symbol DSSS: 1 Msps and 2 Msps (DSS) 802.11 PHY

- Code period = spreading factor (equivalently, modulates each symbol
- Equivalent to 22-element wideband (dispersive) antenna array

DSS Transmit Signal (Chip Modulation Ignored)

Effect of Frequency Shift (Chip Modulation Ignored)

Effect of Delay and Frequency Shift (Chip Modulation Ignored)

Effect of Chip Modulation and Channel Dispersion

Multiple DSS Emitter Environment

Received Signal Model After 1:22 Serial-to-Parallel Conversion

$$\mathbf{x}_{\mathsf{ADC}}(n) \longrightarrow \mathbf{x}_{\mathsf{SP}}(n) = \mathbf{\varepsilon}_{\mathsf{SP}}(n) + \sum_{\ell=0}^{L_{\mathsf{emit}}-1} \mathbf{h}_{\mathsf{TR}}(n;\ell) \otimes \left(d(n;\ell) e^{j2\pi\alpha_{\mathsf{TR}}(\ell)n}\right)$$

$$= \mathbf{h}_{\mathsf{SOI}}(n) \otimes \left(d_{\mathsf{SOI}}(n) e^{j2\pi\alpha_{\mathsf{SOI}}n}\right)$$

$$+ \left(\mathbf{\varepsilon}_{\mathsf{SP}}(n) + \sum_{\ell=1}^{L_{\mathsf{SNOI}}} \mathbf{h}_{\mathsf{SNOI}}(n;\ell) \otimes \left(d_{\mathsf{SNOI}}(n;\ell) e^{j2\pi\alpha_{\mathsf{SNOI}}(\ell)n}\right)\right)$$

- 22-element dispersive channel
 - 11 effective degrees of freedom within signal passband
 - 22 effective degrees of freedom over full signal band
- Linearly independent channel vectors if emissions received with different delays, frequency shifts
 - TOA and FOA ⇔ DOA with spatial processor
 - Allows rejection of interference based on range, velocity, or carrier (clock sync) differences
 - Additional separation allowed if codes different as well (e.g., UMTS with short scrambling code)

Example Interference Excision Processing Structure

- Up to 10 co-channel interferers excisable within signal passband
 - 21 excisable over full band (most important current application)
 - SNOI's separable on basis of TOA or FOA
 - Many adaptation algorithms available to train weights
 - Once trained, weights can be applied to remainder of signal (stationary background)
- Spatial interference excision results apply on a per-frequency basis
- Performance can greatly exceed matched-filter despreader, if SNOI's also DSS
 - More generally, if SNOI's have 1 Msps base rate (e.g., Bluetooth)

Blind Separation Example: Overlapping MOS-DSSS (1988 DSP Workshop)

SOI Parameters

- 20 ksym/sec QPSK message seq.
- 320 ks/s QPSK spreading sequence
- 16-chip PN spreading code
- 100% Nyquist chip-shaping
- 0 dB received SWNR
- No timing or carrier offset

SNOI Parameters

- 20 kb/s BPSK message sequence
- 320 kb/s BPSK spreading sequence
- 16-chip PN spreading code
- 100% Nyquist chip-shaping
- 30 dB received SWNR (-30 dB SIR)
- 15-chip timing offset
- 32 kHz carrier offset

Matched filter <u>fails</u> (MF output SINR = -17 dB)

Excision Performance

- 1 kbaud (16 kchip) collect
- 32 samples per baud (2 samples per chip)
- 64-tap FSE demodulator
- Static LSCMA blind adaptation algorithm

Example: Stacked-Carrier Spread Spectrum

- Developed 1994-1996 for covert LPI/AJ airborne communications (Backtalk system)
- Goal to fully integrate adaptive arrays with spread spectrum modulation
 - Maintain <u>full advantages</u> of wideband spreading (frequency selectivity, narrowband jammer suppression)
 - Add <u>full advantages</u> of adaptive spatial processing (especially linear interference excision)
 - Eliminate problems associated with both technology classes
 - Provide ancillary benefits associated with USAF problem(s)
- Led to stacked-carrier spread spectrum (SCSS) modulation format
 - Direct spreading over discrete frequency channels
 - Implementation using TDD-OFDM/multitone processing structures
 - Array-like adaptive excision of other SCSS links as part of the despreading process
 - Adaptive processing at all nodes in network (adaptive link optimization)
 - Seamless extension to spatial Tx/Rx processing
 - » Fully-adaptive combining over all available diversities (spatial, spectral, polarization)
 - » Unchanged transmit/receive adaptation, sync/timing recovery algorithms
 - » Baseband directly recovered eliminates dispersive effects due to wide spread BW
- Incorporated into (original) TDD variant of AT&T WLL for Angel program (1995-1997)
 - Reference US Patents 6,128,276 (Backtalk) and 6,359,923 (Angel)

Stacked Carrier Spreading/Despreading Concept

Frequency Channelizer Based Implementation

Integrated Spatial and Spectral Despreader (SCSS and Multielement Antenna Arrays)

Link 1 Gain Intensities, Common Spreading Code

Link 6 Gain Intensities, Common Spreading Code

Example Code Nulling Capability: Fully-Loaded SCMA Network, Random Spreading Codes

Multiple Access Spreading, Despreading Parameters

Spreading factor = 16

Number of users = 16 (fully loaded network)

Required despread SINR = 24 dB (6 bits/symbol w/ ECC)

Input SWNR Range = 24-30 dB, randomly varied each link

Number of MA trials = $200 (16 \times 200 = 3,200 \text{ spreading codes})$

Spreading codes = Random (nominal uplink signals)

 16 SCMA users supported

1 CDMA user supported

Eight-Mobile Multiple-Access Demonstration

